Skip to content
Open menu Close menu

Oxidic Nanomaterials for High Density Storage in Li-ion Batteries

Summary of Project

The oxides of a number of materials are very appealing candidates as substitutes for conventional anodes in lithium-ion batteries because of their high theoretical capacity, high electric conductivity low potential of lithium ion intercalation, as well as superior electron mobilities, with one such material, SnO2 being particularly appealing. For example nanostructured SnO2 materials have attracted wide interest due to their potential for use in a wide variety of applications from gas sensors and photocatalysts to transparent electrodes for energy conversion and energy storage devices.

The wide applicability of nanostructured materials in general arises from their quantum size effect, large surface area and high surface activity. Despite significant progress already made using standard synthetic methods, many potentially interesting oxidic materials are still far from commercialisation. Therefore, it is imperative that new oxidic anode materials with novel architectures are investigated to further the development of commercially viable electrodes with high energy and power densities. Self-assembled hybrid nanoparticles can satisfy many requirements required for energy storage, making them interesting anode materials.

The aim of this project is to:

  1. Develop a general approach for the synthesis of a number of crystalline oxide materials of interest for lithium ion storage (SnO2, LiCoO2 and LiMn2O4)
  2. Develop the technology to attach multilayers of these materials to conducting substrates
  3. Characterise the materials as
    1. monolayers
    2. multilayers within a device architecture
  4. Determine the potential of these nanomaterials for their charge storage capacity.

Entry requirements

A 2i MChem or MSc in Materials Chemistry or a related subject.

Supervisors

Title and name:
Dr Stephen Hickey
Position:
Reader in Physical Chemistry
Email address:
Telephone number :
Work+44 (0) 1274 235527
View full profile
Title and name:
Dr William Martin
Position:
Lecturer in Chemistry
Email address:
Telephone number :
Work+44 (0) 1274 233362
View full profile